

Search for new physics signals

in precision B physics

Cai-Dian Lü (吕才典) lucd@ihep.ac.cn

CFHEP, Institute of High Energy Physics, Beijing

Elementary particles

Complete? 费米子为什 么有三代? 质量的起源? 中微子振荡 反物质、暗 物质的疑问 CP起源? Higgs势稳 定性。

Search for new particle or new phenomena is our major task in particle physics

- There are two ways to achieve that: direct search or indirect search
- Accordingly we have two directions in high energy physics experiments: high energy and high intensity ...

There are many high intensity experiments:

- Beijing electron position collider (BEPC)
- Daya Bay neutrino experiment (Jiangmen)etc.
- B-factories (two machines)
- There is even a super B-factory (Belle II)

3

B factory

Mt. Tsukuba

KEKB ring (HER+LER) 3km circumference

Belle detector

Linac

KEK Tsukuba site

Super B factory Belle II

KEKB ring (HER+LER)

Mt. Tsukuba

The discovery of direct CP violation leads to 2008 Nobel Prize Belle detector

Linac

KEK Tsukuba site

大型强子对撞机(LHC)

Lucd

Example in the history

Long time ago, we had only 3 flavors of quarks: u,d,s.

Experimentally we found that

CDLu

GIM 2x2

VOLUME 2, NUMBER 7

Weak Interactions with Lepton-Hadron Symmetry*

S. L. GLASHOW, J. LIOPOULOS, AND L. MAIANI[†]

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Mills theory is discussed.

theless, suitable redefinitions of the relative phases of the quarks may be performed in order to make U real and orthogonal, so without loss of generality we write

 $U = \begin{bmatrix} -\sin\theta & \cos\theta \\ & \\ \cos\theta & \sin\theta \end{bmatrix}.$ (5) $\begin{pmatrix} U \\ O' \end{pmatrix} \begin{pmatrix} C \\ S' \end{pmatrix}$

We begin by introducing four quark fields.¹⁰ The three quarks \mathcal{O} , \mathfrak{N} , and λ form an SU(3) triplet, and the fourth, \mathcal{O}' , has the same electric charge as \mathcal{O} but differs from the triplet by one unit of a new quantum number \mathfrak{C} for charm. The strong-interaction Lagrangian 55 8

$$\begin{pmatrix} d'\\ s' \end{pmatrix} = \begin{pmatrix} \cos\theta_c & \sin\theta_c\\ -\sin\theta_c & \cos\theta_c \end{pmatrix} \begin{pmatrix} d\\ s \end{pmatrix}$$

Example in the history

Long time ago, we had only 3 flavors of quarks: u,d,s.

Experimentally we found that

 $\sin\theta_c$ [f(m_u) - f(m_c)]= 0, if m_u=m_c

Divergent cancel

GIM

Later, more precise experiments found that

$$Br(K^{0} \rightarrow \mu^{+}\mu^{-}) \sim 10^{-9} \qquad \text{K-\underline{K}} \ \underline{\mathbb{R}} \ \underline{\mathbb{R}}$$

ling and Richter found that in 1974

J / Ψ(*CC*)

10

CDLu

Flavor physics is important

The origin of flavour is one of the big, unsolved mysteries of fundamental physics!

While the Standard Model (SM) *describes* flavour physics very accurately, it does not *explain* its mysteries:

- ✓ Why are there 3 generations in nature?
- ✓ What determines the extreme hierarchy of fermion masses?
- ✓ What determines the elements of the CKM matrix?
- ✓ What is the origin of the matter-antimatter asymmetry (CP violation)?

→ progress in flavour physics may help understand open questions in cosmology

History has shown that flavour physics often gives first evidence for new discoveries:

- ≻ Kaon mixing, BR(K⁰_L→ $\mu\mu$) & GIM → prediction of charm
- ➢ CP violation → prediction of third quark family
- ➤ B mixing → mass of top is very heavy
- ➤ rare B-decays → SUSY parameter space constrained

CDLu

Necessary conditions: (A.Sakharov, 1967)

- 1) Baryon number violations: initial and final baryon numbers are different.
- 2) C and CP violation: partial decay widths are different.
- **3)** Out of equilibrium: no reversing reaction installing the initial state.

Co⁶⁰ experiment by Wu in 1957

虽然C和P在弱作用下都不守恒 但是CP联合变换是守恒的

CP conserved in most cases

电磁流: 矢量流 A_µuγ^µu

弱作用拉氏量:左手流
"上帝"是左撇子
左旋夸克,右旋反夸克

Lucd

Experimental **Discovery** of CP Violation

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JULY 1964

EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON*[†]

J. H. Christenson, J. W. Cronin,[‡] V. L. Fitch,[‡] and R. Turlay[§]

Princeton University, Princeton, New Jersey (Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have served^{1,2} to set an upper limit of 1/300 for the fraction of K_2^{0} 's which decay into two charged pions. The present experiment, using spark chamber techniques, proposed to extend this limit.

In this measurement, K_2^{0} mesons were produced at the Brookhaven AGS in an internal Be target bombarded by 30-BeV protons. A neutral beam was defined at 30 degrees relative to the circulating protons by a $1\frac{1}{2}$ -in.× $1\frac{1}{2}$ -in.×48-in. collimator at an average distance of 14.5 ft. from The analysis program computed the vector momentum of each charged particle observed in the decay and the invariant mass, m^* , assuming each charged particle had the mass of the charged pion. In this detector the K_{e3} decay leads to a distribution in m^* ranging from 280 MeV to ~536 MeV; the $K_{\mu3}$, from 280 to ~516; and the $K_{\pi3}$, from 280 to 363 MeV. We emphasize that m^* equal to the K^0 mass is not a preferred result when the three-body decays are analyzed in this way. In addition, the vector sum of the two momenta and the angle, θ , between it and the direction of the K_n^0 beam were determined. This

Nobel prize ('80) for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons

2×10⁻³: Too Small for Sakharov !

CP violation in the K and B meson decays

can be explained by the Standard Model.

CP violation in the universe can not be explained by the Standard Model.

$$\frac{|\boldsymbol{n}_{\mathcal{B}}|}{|\boldsymbol{n}_{\gamma}|}|_{\text{WMAP}} = (5.1^{+0.3}_{-0.2}) \times 10^{-10}$$

SM

n,

 $\approx 10^{-20}$

New source for CP violation beyond the Standard Model in the particle world?

CP破坏的可能来源

- 在60年代的很多种理论探索中,超弱相互作用理论是最为 多数人所接受的理论.
- 按照这个理论,CP破坏效应来自于与弱相互作用不同的超弱相互作用,并且CP破坏效应也将只能在中性K介子的衰变中被观察到(Wolfenstein)
- 当时的实验发现除中性K介子的衰变外其它的实验中也都 没有观察到CP破坏现象

混合CP破坏 $K_{+} = \frac{1}{\sqrt{2}} \begin{bmatrix} K^{0} + \overline{K}^{0} \end{bmatrix}$ CP本征态: $K_{-} = \frac{1}{\sqrt{2}} \begin{bmatrix} K^{0} - \overline{K}^{0} \end{bmatrix}$ 质量本征态

强作用本征态

其中ε是一个小的复参量,描写CP不守恒成分所占比例 ε=0时即CP守恒.这是**混合产生的**CP破坏

Lucd

强CP破坏

(1) 按照量子色动力学,基本的拉格朗日量中可以 存在一项

$$L_{ heta} = heta$$
 [$g^2 / 32\pi^2$] $F^{\mu
u} \widetilde{F}_{\mu
u}$,

其中 θ 是一个无量纲的常量, $\theta \neq 0$ 时将导致强相互

作用中有CP破坏出现,通常称为强CP破坏

$$\tilde{F}_{\mu\nu} = i \varepsilon_{\mu\nu\alpha\beta} F^{\alpha\beta}$$
也可以用来解释暗物质

Lucd

A lot of models have been proposed to explain the CP violation phenomena

In 1972, Kobayashi (b, 1944) & Maskawa (b, 1940) give a new explanition

Both received Ph.D. from Nagoya ('72 & '67) and both joined Kyoto as an assistant ('72 & '70).

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed.

We accepted the Glashow-Weinberg-Salam theory of the weak interaction's extension to the hadron..., because the fourth quark already existed for us in a sense. Sometimes it is said that our *CP* paper was written before the discovery of charm. In this sense, however, our paper came after the charm.

-- Kobayashi (1992)

Nobel Prize

of Physics

in 2008

现在三代夸克

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
2008诺贝尔奖 $[c_i = \cos \theta_i \text{ and } s_i = \sin \theta_i]$

$$\hat{V}_{CKM} = \begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} \\ s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} \\ c_1s_2s_3 - c_2c_3e^{i\delta} \end{pmatrix}$$
KM矩阵, 小林和益川, M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

 $\left(\begin{array}{c} \cos\theta_c & \sin\theta_c \\ -\sin\theta_c & \cos\theta_c \end{array} \right)^{\perp}$

Lucd

Direct CP violation

Lucd

$B \rightarrow \pi \pi$ Has Two Kinds of Diagrams with different weak phase

Tree $\propto V_{ub}V_{ud}*$

*U*3,*U*4,*U*5,*U*6

Penguin $\sim V_{tb}V_{td}$ *

Prof. John Ellis @ SymmetryMagazine.org

CDLu

CP Violation in $B \rightarrow \pi \pi (K)$ (real prediction before exp.)

CP(%)	FA	BBNS	PQCD (2001)	Exp (2004)
$\pi^{+}\!K^{-}$	+9±3	+5±9	-17±5	-11.5±).8
$\pi^{0}K^{+}$	$+8 \pm 2$	7 ± 9	-13 ±4	$+4 \pm 4$
$\pi^{+}\!K^{0}$	1.7 \pm 0.1	1 ±1	-1.0 ± 0.5	-2 ± 4
$\pi^+\pi^-$	-5±3	<u>6±12</u>	+ 30 ±10	+37±10

CP Violation in $B \rightarrow \pi \pi (K)$

Including large annihilation fixed from exp.

$\pi^{+}K^{-} +9\pm 3 -7.4 \pm 5.0 -17\pm 5 -9.7 \pm 1.2$ $\pi^{0}K^{+} +8 \pm 2 0.28\pm 0.10 -13 \pm 4 4.7 \pm 2.6$ $\pi^{+}K^{0} 1.7\pm 0.1 4.9 \pm 5.9 -1.0\pm 0.5 0.9 \pm 2.5$ $\pi^{+}\pi^{-} -5\pm 3 17\pm 1.3 +30\pm 10 +38\pm 7$	CP(%)	FA	Cheng,HY	PQCD (2001)	Exp
$\pi^{0}K^{+} +8 \pm 2 0.28\pm0.10 -13 \pm 4 4.7 \pm 2.6$ $\pi^{+}K^{0} 1.7\pm 0.1 4.9 \pm 5.9 -1.0\pm0.5 0.9 \pm 2.5$ $\pi^{+}\pi^{-} -5\pm3 17\pm1.3 \pm30\pm10 \pm38\pm7$	$\pi^{ +}\!K^{-}$	+9±3	-7.4 ± 5.0	-17±5	<u>-9.7</u> ≱1.2
$\pi^{+}K^{0} 1.7 \pm 0.1 4.9 \pm 5.9 -1.0 \pm 0.5 0.9 \pm 2.5$ $\pi^{+}\pi^{-} -5 \pm 3 17 \pm 1.3 +30 \pm 10 +38 \pm 7$	$\pi^{0}K^{+}$	+8 ± 2	0.28 ± 0.10	-13 ±4	4.7 ± 2.6
$\pi^{+}\pi^{-}$ -5±3 17 ± 1.3 +30±10 +38±7	$\pi^{+}\!K^{0}$	1.7 \pm 0.1	4.9 ± 5.9	-1.0 ± 0.5	0.9 ±2.5
	$\pi^{+}\pi^{-}$	-5 ±3	17 ± 1.3	+30±10	+38+7

 π K puzzle

PDG2006 & 2020 Unitarity Triangle Comparison

The CKM (Cabibbo·Kobayashi·Maskawa) matrix

Another possible parametrisations (Chau and Keung parametrisation, adopted by PDG):

 $\frac{1-\lambda^{2}/2}{-\lambda} \qquad \frac{\lambda}{1-\lambda^{2}/2} \qquad \frac{\lambda\lambda^{3}(\rho-i\eta)}{A\lambda^{2}}$ $A\lambda^{3}(1-\rho-i\eta) -A\lambda^{2} \qquad 1$

The key point of CP violation

- If we found another world of civilization, we have to make sure whether they are made of anti-matter, before we travel to them
- This is very important (Annihilation)
- Since the definition of matter/anti-matter, left/right is arbitrary, unless we have CP violation:

$$\frac{\Gamma(K_L \to \pi^- \mu^+ \nu) - \Gamma(K_L \to \pi^+ \mu^- \overline{\nu})}{\Gamma(K_L \to \pi^- \mu^+ \nu) + \Gamma(K_L \to \pi^+ \mu^- \overline{\nu})} = (0.64 \pm 0.08)\%$$

Heavy flavor physics is a very important hot topic in particle physics recently

- People expect the new physics signal from the heaviest top quark, since it is very close to the electroweak breaking scale
- But there are too few data of top quark production
 Therefore beauty quark is our best chance for new physics signals, since they both belong to the third family

Current Flavor Anomalies

- $\sim 3.5\sigma ~(g-2)_{\mu}$ anomaly
- $\sim 3.5\sigma$ non-standard like-sign dimuon charge asymmetry

4.2 σ

- $\sim 3.5\sigma$ enhanced $B \rightarrow D^{(*)}\tau\nu$ rates
- $\sim 3.5\sigma$ suppressed branching ratio of $B_s o \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B
 ightarrow K^* \mu^+ \mu^-$ angular distributions
- 2 3 σ SM prediction for ϵ'/ϵ below experimental result
- $\sim 2.5\sigma$ lepton flavor non-universality in $B \to K \mu^+ \mu^-$ vs. $B \to K e^+ e^-$
- $\sim 2.5\sigma \quad \text{non-zero } h
 ightarrow au \mu$

 $R_{D(*)}$

 P_5'

 R_K

Lepton universality

Lepton couplings to gauge bosons in the standard model are all the same

Very well tested, PDG averages:

$\frac{B(W^+ \to \mu^+ \nu)}{B(W^+ \to e^+ \nu)}$	=	0.991 ± 0.018
${B(W^+ o au^+ u) \over B(W^+ o e^+ u)}$	=	1.043 ± 0.024
${B(W^+ o au^+ u) \over B(W^+ o \mu^+ u)}$	=	1.070 ± 0.026

$$\frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)} = 1.0009 \pm 0.0028$$
$$\frac{B(Z \to \tau^+ \tau^-)}{B(Z \to e^+ e^-)} = 1.0019 \pm 0.0032$$

.9977 (SM)

CDLu

Introduction to $R(D^{(*)})$

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}, \quad \text{with } \ell = \mu, e$$

SM predictions (2012):

• Type II 2HDM is said to be ruled out

- apparently the τ has a stronger coupling
- at tree level, several possible other couplings

- new W gauge boson with non-universal couplings (our model W_R)
- -leptoquark need very specific flavour structure
- charged Higgs, seems a natural explanation but the simple models do not work

CDLu

Standard model predictions

Theoretical uncertainty: form factors data from $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$ + HQET or pQCD + lattice QCD

$$\begin{split} R(D) &= 0.296 \pm 0.016 \text{ (Fajfer, Kamenik, Nisandzic)} \\ &\quad 0.302 \pm 0.015 \text{ (Sakaki, MT, Tayduganov, Watanabe)} \\ &\quad 0.299 \pm 0.011 \text{ (Bailey et al.)} \\ &\quad 0.337^{+0.038}_{-0.037} \text{ (Fan, Xiao, Wang, Li)} \\ &\quad 0.391 \pm 0.041 \pm 0.028 \text{ (Exp. HFAG)} \end{split}$$

$$\begin{split} R(D^*) &= 0.252 \pm 0.003 \text{ (Fajfer, Kamenik, Nisandzic)} \\ &= 0.252 \pm 0.004 \text{ (Sakaki, MT, Tayduganov, Watanabe)} \\ &= 0.269^{+0.021}_{-0.020} \quad \text{(Fan, Xiao, Wang, Li)} \\ &= 0.322 \pm 0.018 \pm 0.012 \text{ (Exp. HFAG)} \end{split}$$

Current Experimental Status

• The combined results of $R(D^{(*)})$ indicate about 3σ deviation from the SM predictions

 $R(D) = 0.340 \pm 0.027 \pm 0.013$

- $R(D^*)=0.295\pm0.011\pm0.008$
- LHCb reported

 $R(J/\psi) = \frac{\mathcal{B}(B_c \to J/\psi \tau \nu)}{\mathcal{B}(B_c \to J/\psi \mu \nu)}$ = 0.71±0.17±0.18,

which deviate 2σ away from

the SM prediction $_{CDLu}$

 $\mathcal{B}(B_c \to \tau \nu) < 10\%$ from LEP

Nothing seen in other meson decay

	Exp. (PDB)	SM
$\frac{B(K^+ \to \pi^0 \mu^+ \nu)}{B(K^+ \to \pi^0 e^+ \nu)}$	0.6608±0.0029	0.6631±0.0042 (Cirigliano et al)
$\frac{B(K^+ \to e^+ \nu)}{B(K^+ \to \mu^+ \nu)}$	2.488±0.009(10 ⁻⁵)	2.477±0.001 (10 ⁻⁵) (Cirigliano et al)
$\frac{B(\pi^+ \to e^+ \nu(\gamma))}{B(\pi^+ \to \mu^+ \nu(\gamma))}$	1.2327±0.0023(10 ⁻⁴)	1.2352±0.0005(10 ⁻⁴) (Marciano, Sirlin)

- no simple models
- \bullet need to arrange the flavour structure to single out this family: b, τ

S. 18.

Calculation of Form factors

All form factors are functions of q²

- Small recoil (Near Max point of q²): HQET, Lattice QCD
- Large recoil (Near $q^2 = 0$):

Light Cone Sum Rule, Perturbative QCD

Bourrelly-Caprini-Lellouch (BCL)

Caprini-Lellouch-Neubert (CLN)

A combined model independent analysis of the R(D), R(D*) and $R(J/\psi)$ anomalies

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_1}) O_{V_1} + C_{V_2} O_{V_2} + C_{S_1} O_{S_1} + C_{S_2} O_{S_2} + C_T O_T \right]$$

All possible operators: Lorentz Invariant

 $O_{S_1} = (\overline{c}_L b_R)(\overline{\tau}_R v_L), \quad O_{S_2} = (\overline{c}_R b_L)(\overline{\tau}_R v_L),$ $O_{V_1} = (\overline{c}_L \gamma^{\mu} b_L)(\overline{\tau}_L \gamma_{\mu} v_L), \quad O_{V_2} = (\overline{c}_R \gamma^{\mu} b_R)(\overline{\tau}_L \gamma_{\mu} v_L),$ $O_T = (\overline{c}_R \sigma^{\mu\nu} b_L)(\overline{\tau}_R \sigma_{\mu\nu} v_L),$

Huang, Li, Lu, Paracha, Wang, PRD98 (2018) no.9, 095018

It is found that none of the single operators can explain simultaneously the current experimental measurements of the ratios R(D), R(D*) and $R(J/\psi)$ at the confidence level of 1σ

Even with 2σ Constraints, the NP scalar operators are also ruled out

2σ Constraints on the left-handed vector operator

V₁ scenario

CDLu

2σ Constraints on the right-handed vector operator and tensor operator

Leptoquark model

Cheung, Huang, Li, Lu, Mao Tang, arXiv:2002.07272 [hep-ph]

)	V
• Lagrangian of Leptoquark $\mathcal{L}_{R_2} = \left(y_R^{b\tau} \bar{b}_L \tau_R + y_L^{c\tau} \bar{c}_R \nu_L \right) Y_{2/3} + \text{H.c.}$			×	
$\mathcal{L}_{S_1} = \left((V_{\text{CKM}}^* y_L)^{c\tau} \bar{c}_L^c \tau_L - y_L^{b\tau} \bar{b}_L^c \nu_L \right)$ $\mathcal{L}_{U_1} = \left((V_{\text{CKM}} x_L)^{c\tau} \bar{c}_L \gamma_\mu \nu_L + x_L^{b\tau} \bar{b}_L \right)$	$+ y_R^{c au} \bar{c}_R^c$ $\gamma_\mu \tau_L +$	$\left(\tau_R \right) Y_{1/3} + \text{H.c.}$ $x_R^{b\tau} \bar{b}_R \gamma_\mu \tau_R \left(X_{2/3}^{\mu} + X_{2/3}^{\mu} \right) $	с - Н.с.	τ
$\frac{\text{SM quantum number}}{[\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)]}$	Spin	Fermions coupled	to	
R_2 (3, 2, 7/6)	0	$\bar{c}_R \nu_L, \bar{b}_L \tau_R$		

 $(\bar{3},1,1/3) \qquad \qquad 0 \qquad \bar{b}_L^c \nu_L, \bar{c}_L^c \tau_L, \bar{c}_R^c \tau_R$

 $(3,1,2/3) 1 \bar{c}_L \gamma_\mu \nu_L, \bar{b}_L \gamma_\mu \tau_L, \bar{b}_R \gamma_\mu \tau_R$

CDLu

 S_1

 U_1

2σ Constraints on the Leptoquark couplings

Non-universal $B \rightarrow K \mu \mu$ / ee rates

LHCb observation of a violation of lepton universality in the rare decays $B \rightarrow K\mu\mu \text{ vs. } B \rightarrow \text{Kee} - \text{ if confirmed} - \text{ would be the most spectacular LHC}$ discovery after the Higgs boson:

Non-universal $B \rightarrow K \mu \mu$ / ee rates

- In SM this ratio equals 1 to high accuracy
- Leading deviations arise from QED corrections, giving rise to large logarithms involving the ratio m_B/m_{µ,e}
- The effects have been estimated and were found to be of O(1%) [Bordone, Isidori, Pattori: 1605.07633]
- SM prediction very clean!

CDLu

- Eagerly awaiting an update from LHCb (electron reconstruction efficiency is rather different from that for muons)...
- Teaser on R_{K^*} People wait for that until two years later

The compatibility of the result in the low-q² with respect to the SM prediction(s) is of 2.2-2.4 standard deviations
 The compatibility of the result in the central-q² with respect to the SM prediction(s) is of 2.4-2.5 standard deviations

Second surprise in b \rightarrow s *l*+*l*-

apparently the μ has a weaker coupling than the electron at tree and loop level, many possible other NP couplings

Violation of lepton flavor universality

$$R(K) = \frac{BF(B \to K\mu^+\mu^-)}{BF(B \to Ke^+e^-)} \qquad R(K^*) = \frac{BF(B \to K^*\mu^+\mu^-)}{BF(B \to K^*e^+e^-)}$$

theoretically very clean!

Observable	Expt (LHCb)	SM	σ
R(K), q ² =[1, 6] GeV ²	0.745 ^{+0.090} -0.074 [±] 0.036	1.00±0.01	2.6
R(K ^{*0}), q ² =[0.045, 1.1]	0.66 ^{+0.11} -0.07±0.03	~ 0.920	2.1-2.3
R(K ^{*0}), q ² =[1.1, 6]	0.69 ^{+0.11} -0.07 [±] 0.05	~ 0.996	2.4-2.5
	arXiv:1705.05802		

For $q^2 < 6 \text{ GeV}^2$, SM predictions for $b \rightarrow s\mu^+\mu^-$ consistently overshoot the data (also for $B_s \rightarrow \phi\mu^+\mu^-$, $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$; both involve unknown hadronic uncertainties)

A lot of theoretical discussions

Capdevila et al [1704.05340] Altmannshofer, Steangl, Straub [1704.05435] D'Amico et al [1704.05438] Hiller, Nisandzic [1704.05444] Geng et al [1704.05446] Ciuchini et al [1704.05447] Celis et al [1704.05672] Becirevic, Sumensari [1704.05835] Cai et al [1704.05849] Kamenik, Soreq, Zupan [1704.06005] Sala, Straub [1704.06188] Di Chiara et al [1704.06200] Ghosh [1704.06240] Alok, D. Kumar, J. Kumar, Sharma [1704.07347] Alok et al [1704.07397] Wang, Zhao [1704.08168] Bonilla, Modak, Srivastava, Valle [1705.00915] Bishara, Haisch, Monni [1705.03465] Megias, Panico, Pujolas Quiros [1705.04822] Tang, Wu [1705.05643] Hurth, Mahmoudi, Santos, Neshatpour [1705.06274]

Poh, Raby [1705.07007] Datta, Kumar, Liao, Marfatia [1705.08423] Das, Hati, Kumar, Mahajan [1705.09188] Bardhan, Byakti, Ghosh [1705.09305] Matsuzaki, Nishiwaki, Watanabe [1706.01463] Luzio, Nardecchia [1706.01868] Chiang, He, Tandean, Yuan [1706.02696] Chauhan, Kindr, Narang [1706.04598] King [1706.06100] Chivukula, Isaacson, Mohan et al [1706.06575] Khalil [1706.07337] He, Valencia [1706.07570] Doršner, Fajfer, Faroughy, Košnik [1706.07779] Buttazzo, Greljo, Isidori, Marzocca [1706.07808] Choudhury, Kundu, Mandal, Sinha [1706.08437] Cline, Camalich [1706.08510] Crivellin, Mueller, Signer, Ulrich [1706.08511] Guo, Han, Li, Liao, Ma [1707.00522] Chen, Nomura [1707.03249] Baek [1707.04573] Bian, Choi, Kang, Lee [1707.04811]

NP models capable of generating $C_{9,10}^{NP}$:

Tree level: $\int Z'$, SU(2)_L singlet or triplet

leptoquark, spin 0 or 1 SUSY with R-parity violating interactions

Loop level: Z' penguin new heavy scalars/vectors

Flavour anomalies and New Physics

If confirmed by future analyses, what does this point to?

$$R_{D^{(*)}} \quad \Leftrightarrow \quad au
eq e, \mu$$
 $R_K \quad \Leftrightarrow \quad \mu
eq e$

SM gauge interactions do not distinguish between different leptons, and Higgs exchange is irrelevant; hence need new particles beyond the SM with new types of interactions

- $U(1)\tau$ - μ \rightarrow new Z' boson coupling with opposite sign to μ/τ
- New particles with Yukawa-like interactions, leptoquarks (better: lepto-quark-bosons)

Angular analysis of $B \rightarrow K^* \mu \mu$ decays

Rare $B \rightarrow K^* \mu \mu$ decays offer a rich laboratory for new-physics searches via differential angular distributions as a functions of lepton invariant mass:

Angular analysis of $B \rightarrow K^* \mu \mu$ decays

Rare $B \rightarrow K^* \mu \mu$ decays offer a rich laboratory for new-physics searches via differential angular distributions as a functions of lepton invariant mass:

$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{l}d\cos\theta_{K}d\phi}$$

S-wave and S&P-wave interference
$$=\frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{S} + A_{S}\cos\theta_{K}\right) \left(1 - \cos^{2}\theta_{l}\right) + A_{S}^{5}\sqrt{1 - \cos^{2}\theta_{K}}\right] \right\}$$
$$\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] + \left(1 - F_{S}\right) \left[2F_{L}\cos^{2}\theta_{K}\left(1 - \cos^{2}\theta_{l}\right)\right]$$
$$+ \frac{1}{2}\left(1 - F_{L}\right)\left(1 - \cos^{2}\theta_{K}\right)\left(1 + \cos^{2}\theta_{l}\right) + \frac{1}{2}P_{I}\left(1 - F_{L}\right)\right]$$
$$\left(1 - \cos^{2}\theta_{K}\right)\left(1 - \cos^{2}\theta_{l}\right)\cos2\phi + 2P_{5}'\cos\theta_{K}\sqrt{F_{L}}\left(1 - F_{L}\right)\right]$$
$$\sqrt{1 - \cos^{2}\theta_{K}}\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] \right\}$$
P-wave

Angular analysis of $B \rightarrow K^* \mu \mu$ decays

It is useful to construct observables which are less sensitive for hadronic uncertainties related to form factors

[Descotes-Genon, Matias, Ramon, Virto: 1207.2753]

One particular such observable — called P'_5 — shows a large discrepancy with the SM prediction in a particular q² range:

2.8 σ deviation in q^2 bin between [4, 6] GeV² (3.0 σ in bin [6, 8] GeV²)

Predictions for other similar channels

Predictions for other similar channels

Rich physics in hadronic B/D decays

CP violation, FCNC, sensitive to new physics contribution...

How can we test the standard model without solving QCD?

Perturbative calculations

- In principle, all hadronic physics should be calculated by QCD
- In fact, you can always use QCD to calculate any process,
- provided you can renormalize the infinities and do all order calculations.
- Perturbation calculation means order by order
- Involving loop diagrams
- Therefore divergences unavoidable

Divergences

- Ultraviolet divergences \rightarrow renormalization
- Infrared divergences ? Infrared divergence in virtual corrections should be canceled by real emission
- In exclusive QCD processes \rightarrow factorization

Divergences

- Ultraviolet divergences \rightarrow renormalization
- Infrared divergences ? Infrared divergence in virtual corrections should be canceled by real emission
- In exclusive QCD processes \rightarrow factorization

Factorization can only be proved in power expansion by operator product expansion. To achieve that, we need a hard scale Q

- In the certain order of 1/Q expansion, the hard dynamics characterized by Q factorize from the soft dynamics
- Hard dynamics is process-dependent, but calculable
- Soft dynamics are universal (process-independent)
 predictive power of factorization theorem
- Factorization theorem holds up to all orders in α_s , but to certain power in 1/Q
- In B decays the hard scale Q is just the b quark mass

OCD-methods based on factorization work well for the leading power of 1/*m_b* expansion

- collinear QCD Factorization approach [Beneke, Buchalla, Neubert, Sachrajda, 99']
- Perturbative QCD approach based on *k*_T factorization [Keum, Li, Sanda, 00'; Lu, Ukai, Yang, 00']
- Soft-Collinear Effective Theory Bauer, Fleming, Pirjol, Stewart, Phys.Rev. D63 (2001) 114020
- * Work well for most of charmless B decays, except for $\pi\pi$, πK puzzle etc.

Search for new physics in hadronic B decays theoretically very complicated

K. Huitu, C.D. Lü, P. Singer D.X. Zhang, Phys. Rev. Lett. 81, 4313 (1998), hep-ph/9809566.

 $b \rightarrow ssd$ transition (a) SM, (b) MSSM, (c) MSSM with R-parity violating coupling SM BRs: ~ 10⁻¹⁴, Some New physics can reach 10⁻⁶

CD Lu

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \rightarrow K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 B\overline{B}$ pairs collected with the BABAR detector.

Result : No evidence for these decays was found and a upper limit was set as

$$\mathcal{B}(B^- \to K^- K^- \pi^+) < 1.6 \times 10^{-7}$$

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \rightarrow K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 B\overline{B}$ pairs collected with the BABAR detector.

Result : No evidence for these decays was found and a upper limit was set as

$$\mathcal{B}(B^- \to K^- K^- \pi^+) < 1.6 \times 10^{-7}$$

Recent LHCb result:

Physics Letters B 765 (2017) 307-316

$$\mathcal{B}(B^+ \to K^+ K^+ \pi^-) < 1.1 \times 10^{-8}$$

 $\mathcal{B}(B^+ \to \pi^+ \pi^+ K^-) < 4.6 \times 10^{-8}.$

Recent theoretical results in Randall-Sundrum model:

Chinese Physics C41 (2017) 053106

Br(b \rightarrow ss d-bar) can reach to 10⁻¹⁰

Summary

- Some flavor anomalies have been discussed
- The tension between SM and experiments at the level of 3σ level
- Flavor sector has only been tested at the 10% level and can be done much better
- We are still waiting for a clear New physics signal in the heavy flavor sector

Thanks !